Rancang Bangun Pemantau Daerah Endemik Malaria Berbasis IoT Menggunakan Metode Profile Matching



Abstract— Malaria is an endemic disease transmitted by Anopheles mosquitoes, which causes increased morbidity and mortality (morbidity and mortality), maternal and child health disorders, intelligence, labor force productivity, and detrimental to tourism. From these problems, a tool was developed to monitor endemic malaria areas in real-time by using temperature and humidity data for an area. Then analyzed using the profile matching method to calculate the weight/score gap in temperature and humidity conditions using interpolation, the data will be sent by the DHT 11 sensor found on NodeMcu. The application used to find out in real-time using the Blynk application as an internet of things board with a Wifi connection for the next step NodeMcu requires coding using the Arduino IDE program, for testing the location system used consists of 5 locations namely: L1 = Jl.Magelang, L2 = Jl.Maguwoharjo, L3 = Jl.Babarsari, L4 = Jl.Wates km9, L5 = Jl.Ali times km 8. Obtained temperature and humidity data (L1 = 36.30), (L2 = 18.32), (L3 = 23.45), (L4 = 38.33), (L5 = 35.53), then the gap weight calculation using the interpolation method obtained temperature and humidity data (L1 = 3,800; 3,974), (L2 = 4,600; 4,179), (L3 = 5,000; 5,000), (L4 = 3,400; 4,282), (L5 = 4,000; 5.00), the results obtained from rank 5 locations are malaria-endemic areas, rank 1 = L3-Babarsari, rank 2 = L5-Jl.Kaliurang km 8, rank 3 = L2-Jl.Maguwoharjo, rank 4 = L1-Jl.Magelang, rank 5 = L4-Jl.Wates. from the ranking data, the location must be prioritized L3-Babarsari. Keywords—: Malaria; DHT 11, NodeMCU; Profile Matching; Blynk.


Download data is not yet available.

Achmadi UF, 2005. Manajemen Penyakit Berbasis Wilayah,Kompas, paradigma kesehatan lingkungan.

Afsarimanesh, N., Zia, A., Mukhopadhyay, S., Kruger, M., Yu, P.-L., Kosel, J.and Kovacs, Z., 2016. Smart Sensing System for the Prognostic Monitoring of Bone Health. Sensors, [online] 16(7), p.976.

Agustian, H. (2019, December). Application of Case Based Reasoning for Student Recommendations Drop Out (Case Study: Adisutjipto College of Technology). In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 5, pp.159-166).

Banaee, H., Uddin Ahmed, M. and Loutfi, A., 2013. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors, [online] 13, pp.17472–17500

Dinkes Kabupaten Kulon Progo, 2008. Profi l Kesehatan Kabupaten KulonProgo, Dias Kesehatan Kabupaten Kulon Progo, Yogyakarta.

Nugraheny, D. (2015). Metode Nilai Jarak guna Kesamaan atau Kemiripan Ciri suatu Citra (kasus deteksi awan cumulonimbus menggunakan principal component analysis). Angkasa: Jurnal Ilmiah Bidang Teknologi, 7(2), 21-30.

Oktaviyani, E. D., Christina, S., & Ronaldo, D. (2019, December).Keywords Search Correction Using Damerau Levenshtein Distance Algorithm. In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 5, pp. 167-176).

R. Sahtyawan, “penerapan zero entry hacking didalam security misconfiguration pada vapt (vulnerability assessment and penetration testing),†j. inf. syst. manag., vol. 1, no. 1, pp. 18–22, jul. 2019.

R. Sahtyawan dan A. I. Wicaksono, “Application for Control of Distance Lights Using Microcontroller Nodemcu Esp 8266 Based on Internet of Things (IoT),†Compiler, vol. 9, no. 1, Mei 2020, doi: 10.28989/compiler.v9i1.627.

Yao H, Shum AJ, Cowan M, et al, 2011. Contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron;26:3290–6.

Title Rancang Bangun Pemantau Daerah Endemik Malaria Berbasis IoT Menggunakan Metode Profile Matching
Issue: Vol. 5 No. 1 (2020): JURNAL PILAR TEKNOLOGI
Section Articles
Published: Jun 9, 2020
DOI: https://doi.org/10.33319/piltek.v5i1.51
  • Rama Sahtyawan
  • Landung Sudarmana